FAOs \& their solutions for Module 8:

Angular Momentum-II

Question1: The spin angular momentum operator for electron is given by

$$
\begin{equation*}
s_{x}=\frac{1}{2} \hbar \sigma_{x}, \quad s_{y}=\frac{1}{2} \hbar \sigma_{y}, s_{z}=\frac{1}{2} \hbar \sigma_{z} \tag{1}
\end{equation*}
$$

Where σ_{x}, σ_{y} and σ_{z} are Pauli spin matrices and are given by

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Write the eigenvalues and eigenvectors of s_{x}, s_{y} and s_{z}.

Solution1: We first determine the eigenvalues of the σ_{x} matrix which are determined from the following equation

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=0
$$

or

$$
\lambda^{2}-1=0
$$

implying

$$
\begin{equation*}
\lambda= \pm 1 \tag{2}
\end{equation*}
$$

Thus the eigenvalues of the σ_{x} matrix are ± 1 and therefore the eigenvalues of s_{x} are $\pm \frac{1}{2} \hbar$. Thus if we measure s_{x} [i.e., the x component of the spin angular momentum of a spin $\frac{1}{2}$ particle like electron, proton or neutron] then we will get only one of the two possible (eigen) values $+\frac{1}{2} \hbar$ or $-\frac{1}{2} \hbar$. The corresponding eigenfunctions are easy to determine; e.g., for the eigenvalue $+\frac{1}{2} \hbar$, the eigenvalue equation is written as

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{a}{b}=+1\binom{a}{b}
$$

giving

$$
b=a
$$

Thus the eigenfunction is given by

$$
a\binom{1}{1}
$$

If we normalize the eigenvector we will get

$$
\begin{equation*}
|\hat{\mathbf{x}} \uparrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \tag{3}
\end{equation*}
$$

which is usually referred to as the " x-up" state. Similarly

$$
\begin{equation*}
|\hat{\mathbf{x}} \downarrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1} \tag{4}
\end{equation*}
$$

represents the normalized eigenvector corresponding to the eigenvalue $-\frac{1}{2} \hbar$ (of s_{x}) and is usually referred to as the " x-down" state.

Since σ_{z} is a diagonal matrix, the eigenvalues of σ_{z} are just +1 and -1 implying that the eigenvalues of s_{z} are $+\frac{1}{2} \hbar$ and $-\frac{1}{2} \hbar$. The corresponding (normalized) eigenfunction are easy to determine and are given by

$$
\begin{equation*}
|\hat{\mathbf{z}} \uparrow\rangle=\binom{1}{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
|\hat{\mathbf{z}} \downarrow\rangle=\binom{0}{1} \tag{6}
\end{equation*}
$$

corresponding to the " z-up" state (eigenvalue $+\frac{1}{2} \hbar$ of s_{z}) and the " z-down" state (eigenvalue $-\frac{1}{2} \hbar$ of s_{z}) respectively. Finally the eigenvalues of σ_{y} are determined from the following equation

$$
\left|\begin{array}{cc}
-\lambda & -i \\
+i & -\lambda
\end{array}\right|=0
$$

or

$$
\lambda^{2}-1=0
$$

implying

$$
\begin{equation*}
\lambda= \pm 1 \tag{7}
\end{equation*}
$$

Thus the eigenvalues of s_{y} are (again) $+\frac{1}{2} \hbar$ and $-\frac{1}{2} \hbar$. Corresponding to the eigenvalue $-\frac{1}{2} \hbar$, the eigen function is determined from the equation

$$
\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)\binom{a}{b}=-\binom{a}{b}
$$

or

$$
-i b=-a \Rightarrow b=-i a
$$

Thus

$$
\begin{equation*}
|\hat{\mathbf{y}} \downarrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i} \tag{8}
\end{equation*}
$$

would represent the normalized " y-down" state. Similarly

$$
\begin{equation*}
|\hat{\mathbf{y}} \uparrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{i} \tag{9}
\end{equation*}
$$

would represent the normalized " y-up" state.

Question2: A spin half particle is in the " z-up" state. On that particle, if we make a measurement of s_{x} then what are the values that we will obtain and what will be their probabilities.

Solution2: The spin half particle is in the " z-up" state. On that particle, if we make a measurement of s_{x} then we will get one of the two eigenvalues of s_{x}. In order to determine their probabilities we have to express the (normalized) " z-up" state as a linear combination of the (normalized) " x-up" and " x-down" states:

$$
\begin{equation*}
\left.\left|\hat{\mathbf{z}} \uparrow>=\binom{1}{0}=\frac{1}{\sqrt{2}}\right| \hat{\mathbf{x}} \uparrow>+\frac{1}{\sqrt{2}} \right\rvert\, \hat{\mathbf{x}} \downarrow> \tag{10}
\end{equation*}
$$

Thus, if we make a measurement of s_{x} then the probability of obtaining a " x-up" state [i.e., the probability of obtaining the eigenvalue $+\frac{1}{2} \hbar$ for s_{x}] is $\frac{1}{2}$ and the probability of obtaining a " x down" state is also $\frac{1}{2}$.

Question3: The magnetic moment of the neutral Ag-atom is the same as that of an electron and is given by

$$
\begin{equation*}
\boldsymbol{\mu} \approx-\frac{q}{m} \mathbf{s} \tag{11}
\end{equation*}
$$

where q and m represent the charge and mass of the electron and

$$
\begin{equation*}
s_{x}=\frac{1}{2} \hbar \sigma_{x}, \quad s_{y}=\frac{1}{2} \hbar \sigma_{y}, s_{z}=\frac{1}{2} \hbar \sigma_{z} \tag{12}
\end{equation*}
$$

Such a particle is placed in a static magnetic field given by

$$
\begin{equation*}
\mathbf{B}=B_{0} \hat{\mathbf{z}} \tag{13}
\end{equation*}
$$

Obtain the eigenvalues and eigenfunctionsof the energy associated with magnetic field.

Solution3: The magnetic moment of the neutral Ag -atom is the same as that of an electron and is given by

$$
\begin{equation*}
\boldsymbol{\mu} \approx-\frac{q}{m} \mathbf{s} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{x}=\frac{1}{2} \hbar \sigma_{x}, \quad s_{y}=\frac{1}{2} \hbar \sigma_{y}, s_{z}=\frac{1}{2} \hbar \sigma_{z} \tag{15}
\end{equation*}
$$

where σ_{x}, σ_{y} and σ_{z} are Pauli spin matrices. If such a particle is placed in a static magnetic field given by

$$
\begin{equation*}
\mathbf{B}=B_{0} \hat{\mathbf{z}} \tag{16}
\end{equation*}
$$

then the potential energy associated with magnetic field would be given by

$$
\begin{equation*}
H_{0}=-\boldsymbol{\mu} \cdot \mathbf{B}=\frac{1}{2} \hbar \omega_{0} \sigma_{z} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0} \equiv \frac{q B_{0}}{m}=\frac{2 \mu_{B} B_{0}}{\hbar} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{B}=\frac{q \hbar}{2 m} \simeq 9.274 \times 10^{-24} \mathrm{~J} / \mathrm{T} \tag{19}
\end{equation*}
$$

represents the Bohr magneton. Since the eigenvalues of σ_{z} are +1 and -1 , the solution of the eigenvalue equation

$$
\begin{equation*}
H_{0}\left|n>=E_{n}\right| n>; n=1,2 \tag{20}
\end{equation*}
$$

would be given by

$$
\begin{align*}
& E_{1}=\frac{1}{2} \hbar \omega_{0} \Leftrightarrow|1>=| \mathbf{z} \uparrow>=\binom{1}{0} \tag{21}\\
& E_{2}=-\frac{1}{2} \hbar \omega_{0} \Leftrightarrow|2>=| \mathbf{z} \downarrow>=\binom{0}{1} \tag{22}
\end{align*}
$$

Question4: Write the most general solution of the time dependent Schrodinger equation
$i \hbar \frac{\partial}{\partial t}\left|\Psi(t)>=H_{0}\right| \Psi(t)>(23)$
where
$H_{0}=\frac{1}{2} \hbar \omega_{0} \sigma_{z}$

Solution4 : The most general solution of the time dependent Schrödinger equation

$$
\begin{equation*}
\left.i \hbar \frac{\partial}{\partial t}\left|\Psi(t)>=H_{0}\right| \Psi(t)>=\frac{1}{2} \hbar \omega_{0} \sigma_{z} \right\rvert\, \Psi(t)> \tag{24}
\end{equation*}
$$

would be

$$
\begin{align*}
\mid \Psi(t)> & =\sum_{n=1}^{2} C_{n} e^{-i E_{n} t / \hbar} \mid n> \tag{25}\\
& =C_{1} e^{-i \omega_{0} t / 2}\left|1>+C_{2} e^{+i \omega_{0} t / 2}\right| 2>
\end{align*}
$$

where

$$
\begin{align*}
& E_{1}=\frac{1}{2} \hbar \omega_{0} \Leftrightarrow|1>=| \mathbf{z} \uparrow>=\binom{1}{0} \tag{26}\\
& E_{2}=-\frac{1}{2} \hbar \omega_{0} \Leftrightarrow|2>=| \mathbf{z} \downarrow>=\binom{0}{1} \tag{27}
\end{align*}
$$

Further, the coefficients C_{1} and C_{2} are to be determined from the knowledge of $\mid \Psi(t=0)>$:

$$
C_{1}=\langle 1 \mid \Psi(0)\rangle
$$

and

$$
C_{1}=\langle 2 \mid \Psi(0)\rangle
$$

Of course, if the system is initially in the $\mid \hat{\mathbf{z}} \uparrow>$ or $\mid \hat{\mathbf{z}} \downarrow>$ states, then it will remain in those states for all times to come; these are the stationary states of the problem.

Question5: In continuation of the previous problem, we assume that at $t=0$, the atom is in the $|\hat{\mathrm{x}} \uparrow\rangle$ state. Obtain the time evolution of the state and calculate the expectation values of $s_{x}, \quad s_{y}$ and s_{z}.

Solution5:

At $t=0$, the atom is in the $\mid \hat{\mathbf{x}} \uparrow>$ state. Since

$$
|\hat{\mathbf{x}} \uparrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

we readily get

$$
C_{1}=\langle\hat{\mathbf{z}} \uparrow \mid \hat{\mathbf{x}} \uparrow\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{1}=\frac{1}{\sqrt{2}}
$$

Similarly $C_{2}=1 / \sqrt{2}$. Thus

$$
|\Psi(t)\rangle=\frac{1}{\sqrt{2}} e^{-i \theta}\binom{1}{0}+\frac{1}{\sqrt{2}} e^{i \theta}\binom{0}{1}
$$

or

$$
\begin{equation*}
|\Psi(t)\rangle=\frac{1}{\sqrt{2}}\binom{e^{-i \theta}}{e^{i \theta}} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\frac{1}{2} \omega_{0} t \tag{29}
\end{equation*}
$$

Equation (21)(28) describes the time evolution of the state. Further,

$$
\begin{aligned}
\left\langle s_{x}\right\rangle & =\frac{1}{2} \hbar\langle\Psi(t)| \sigma_{x}|\Psi(t)\rangle \\
& =\frac{1}{4} \hbar\left(\begin{array}{ll}
e^{i \theta} & e^{-i \theta}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{e^{-i \theta}}{e^{i \theta}}
\end{aligned}
$$

or

$$
\begin{equation*}
\left\langle s_{x}\right\rangle=\frac{1}{2} \hbar \cos \omega_{0} t \tag{30}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left\langle s_{y}\right\rangle=\frac{1}{2} \hbar \sin \omega_{0} t \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle s_{z}\right\rangle=0 \tag{32}
\end{equation*}
$$

The above equations physically imply that the direction of the spin angular momentum vector rotates about the z-axis with angular velocity ω_{0}.

Question6: Next consider the more general case when

$$
|\Psi(0)\rangle=\cos \frac{\phi}{2}|\hat{\mathbf{z}} \uparrow\rangle+\sin \frac{\phi}{2}|\hat{\mathbf{z}} \downarrow\rangle
$$

Obtain the time evolution of the state.

Solution6:

We have

$$
\begin{equation*}
|\Psi(0)\rangle=\cos \frac{\phi}{2}|\hat{\mathbf{z}} \uparrow\rangle+\sin \frac{\phi}{2}|\hat{\mathbf{z}} \downarrow\rangle \tag{33}
\end{equation*}
$$

[when $\phi=\pi / 2$, we obtain the results of the previous problem]. Obviously

$$
C_{1}=\cos \frac{\phi}{2} \text { and } C_{2}=\sin \frac{\phi}{2}
$$

so that

$$
\begin{aligned}
|\Psi(t)\rangle & =\cos \frac{\phi}{2} e^{-i \theta}|\hat{\mathbf{z}} \uparrow\rangle+\sin \frac{\phi}{2} e^{+i \theta}|\hat{\mathbf{z}} \downarrow\rangle \\
& =\binom{\cos \frac{\phi}{2} e^{-i \theta}}{\sin \frac{\phi}{2} e^{+i \theta}}
\end{aligned}
$$

Thus

$$
\left\langle s_{x}\right\rangle=\frac{1}{2} \hbar\langle\Psi(t)| \sigma_{x}|\Psi(t)\rangle
$$

or

$$
\begin{equation*}
\left\langle s_{x}\right\rangle=\frac{1}{2} \hbar \sin \phi \cos \omega_{0} t \tag{34}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left\langle s_{y}\right\rangle=\frac{1}{2} \hbar \sin \phi \sin \omega_{0} t \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle s_{z}\right\rangle=\frac{1}{2} \hbar \cos \phi \tag{36}
\end{equation*}
$$

